
DTInsight: A Tool for Explicit, Interactive, and
Continuous Digital Twin Reporting

Kérian Fiter
Dept. of Computer and Software Eng.

Polytechnique Montréal
Montréal, Canada

kerian.fiter@polymtl.ca

Louis Malassigné-Onfroy
École d’Ingénieurs du Conservatoire

National des Arts et Métiers (EICNAM)
Paris, France

louis.malassigne@gmail.com

Bentley Oakes
Dept. of Computer and Software Eng.

Polytechnique Montréal
Montréal, Canada

bentley.oakes@polymtl.ca

Author pre-print. Publication accepted for EDTconf 2025.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any cur-
rent or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collec-
tive works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—With Digital Twin (DT) construction and evolution
occurring over time, stakeholders require tools to understand the
current characteristics and conceptual architecture of the system
at any time. We introduce DTInsight, a systematic and automated
tool and methodology for producing continuous reporting for
DTs. DTInsight offers three key features: (a) an interactive
conceptual architecture visualization of DTs; (b) generation of
summaries of DT characteristics based on ontological data; and
(c) integration of these outputs into a reporting page within a con-
tinuous integration and continuous deployment (CI/CD) pipeline.
Given a modeled description of the DT aligning to our DT
Description Framework (DTDF), DTInsight enables up-to-date
and detailed reports for enhanced stakeholder understanding.

Index Terms—digital twins, software visualization, software
documentation, decision-making, ontologies, OML, monitoring

I. INTRODUCTION

Digital Twins (DTs) are digital representations of phys-
ical systems, enabling monitoring, insight generation, and
control of their physical counterparts [1]. DT engineering
is becoming increasingly systematized through model-based
approaches [2]. However, previous work has shown that the
reporting of DT capabilities often leaves out important de-
tails [3], [4]. We argue this lack of systematic reporting hinders
research into DT capabilities and engineering process.

In particular, the motivation behind DTInsight is to apply
TwinOps [5] to DT engineering. That is, the key problem to
address is: as the DT changes, how can reporting be kept
up-to-date such that stakeholders (including non-technical
personnel such as management) are always aware of the
DT’s current capabilities, architecture, and state. We aim to
improve users’ understanding of their DT and enhance their
decision-making capabilities regarding the DT’s evolution.

Another aspect of this tool is to assist practitioners in
reporting their DT [3]. This approach works towards the vision
of DTs having characteristic cards unifying their digital and
physical element reporting, similar to machine learning model
cards [6], [7] or a Digital Twin Bill of Materials (DT BOM).

Our research treats DTs as a complex software system,
therefore we bring in concepts from fields related to software
engineering and adopt principles of observability [8], to have
a deeper understanding of the DT.

This means working towards giving the user the ability
to investigate and understand the DT’s current structural and
behavioral state. For example, our architectural view promotes
understanding of the data flow between DT components.
We argue that this approach enables practitioners to gain
deeper insights into service-driven DTs, to better support their
construction, evolution, and reporting.

In this article, we present the DTInsight tool and methodol-
ogy, for continuously reporting a DT’s conceptual architecture,
its capabilities, and a selection of its behavior. Our tool’s
source code is available at [9], with [10] containing the
reporting framework ontology and our example modeled DT.

Our DTInsight approach has three pillars, as in Figure 1:
Pillar 1) Explicit reporting, of the DT in the DTDF (Sec-

tion II): Explicit DT reporting is achieved by modeling the
DT using the 21 characteristics from the DT Description
Framework (DTDF) [11], in the Ontology Modeling Language
(OML). We use openCAESAR [12], an ontology development
framework from NASA Jet Propulsion Laboratory (JPL).
These DTDF characteristics are formalized in an OML vo-
cabulary, providing concepts for DT description models.

Pillar 2) Interactive reporting, through a game engine and
system monitoring (Section III): The interactive reporting uses
description models conforming with the DTDF vocabulary
to generate an interactive conceptual architecture of our DT,
in a visualization called a DT constellation [3]. Using the
Godot Engine [13], we can represent the flow of data from the
system’s sensors with the appropriate communication libraries.

Pillar 3) Continuous reporting, through integration into
CI/CD (Section IV): Finally, this visualization is integrated
in a GitHub Actions CI/CD pipeline to create an interactive
and up-to-date reporting page of the DT. This reporting page
uses the description model of the DT to generate a conceptual
architecture diagram, a summary table of the reporting char-
acteristics, and an embedding of the interactive visualization.

II. EXPLICIT DT DESCRIPTION FRAMEWORK ONTOLOGY

Previous work has found that DTs experience reports often
lack crucial information for comparing and understanding the
capabilities of said DT [3], [14]. Therefore, we advocate
for DTs’ explicit reporting through a systematic and con-
sistent reporting framework composed of 21 characteristics

https://orcid.org/0009-0001-7731-0299
kerian.fiter@polymtl.ca
https://orcid.org/0009-0000-8634-3909
louis.malassigne@gmail.com
https://orcid.org/0000-0001-7558-1434
bentley.oakes@polymtl.ca
https://conf.researchr.org/home/edtconf-2025


Pillar 1: explicit reporting

Pillar 2: interactive reporting

Pillar 3:
continuous reporting

calls

insights / actions

Digital TwinPhysical Twin

DTInsight

DT software
sensor data

DT Characteristics
C1: System under Study
C2: Physical acting components
...
C21: Security & safety considerations

DT Model

input

DTDF Ontology

CI/CD
Pipeline

structures
conforms to

generates
Reporting summary

Fig. 1. DTInsight monitors the communication between Physical and Digital Twin, reads the modeled DT, and generates a report.

to describe DTs [11]. These reporting characteristics range
from the twinning time-scale (C7), to fidelity and validity
considerations (C14), technical implementation (C15), and
security and safety considerations (C21).

We formalize this DT Description Framework (DTDF) as
an ontology, available at [10]. An ontology is “an explicit
specification of a conceptualization” [15]. It defines classes,
relations, functions, and axioms that make shared meaning
machine-readable. For increased agility and rigor, we model
the DTDF using OML in the OML Rosetta editor [12].
OML acts as a Domain Specific Language (DSL) layer above
the well-known Web Ontology Language (OWL) to simplify
ontology creation. It represents ontologies as vocabularies
(containing concepts, similar to a meta-model) and descrip-
tions (containing instances of those concepts). The DTDF
vocabulary thus formalizes the 21 DT reporting characteristics
and their ontological relationships.

Then, in an OML description model, we model the incubator
DT example [11], [16]. The incubator’s purpose is to maintain
the temperature in its enclosure through the control of a heater
and the monitoring of temperature sensors. The incubator
DT can then visualize the incubator’s behavior, optimize the
control policy, etc. The incubator DT is proposed as a case
for DT engineering as it has complex behavior in multiple
domains (electrical, thermal, mechanical) yet is simple enough
for pedagogical purposes [17].

The DTDF vocabulary (excerpted in Listing 1) adopts
a three-layered, service-oriented conceptual architecture for
describing DTs. Models and Data are inputs to computational
components called Enablers, which process the models and
data to enable Services providing the DT’s actions or insights.

The DTDF description imports the DTDFVocab to instanti-
ate its defined concepts. This allows each DT use case to reuse

// C6: Services
concept Service < DTComponent, TimeScaleThing
relation entity Provides [from Service to

ProvidedThing forward provides reverse
providedBy]

// C11: Enablers
concept Enabler < DTComponent
relation entity Enables [from Enabler to Service

forward enables reverse enabledBy]
scalar property IsCommEnabler [domain Enabler range

xsd:boolean functional]
// C10: Models/Data
aspect Input
concept Model < DTComponent, Input
concept Data < DTComponent, Input
relation entity InputTo [from Input to Enabler

forward inputTo reverse hasInput]
relation entity DataInput [from DataTransmitted to

Data forward asData reverse fromData]
// C20: Standardization
concept Standardization < base:DescribedThing

Listing 1. DTDF ontology vocabulary model (DTDFVocab) excerpt in OML.

the vocabulary by creating instances tailored to its specific
conceptual architecture. Listing 2 illustrates this approach
through an example describing the incubator using the DTDF.

III. INTERACTIVE DTINSIGHT TOOL

This section describes how DTInsight loads the user’s DT
as described in the DTDF, and generates an interactive visual-
ization. The objective is to unify the structural and behavioral
descriptions of the DT and extend the user’s reporting view
to incorporate both reporting and behavioral insights.

a) Technical Details: DTInsight is built in the Godot
Engine [13], an open-source game engine with active devel-
opment and community. It is well-suited to our needs as it a)
is MIT-licensed, b) supports both 2D and 3D, with advanced



// SERVICE EXAMPLE (C6)
instance what_if_sim : DTDFVocab:Service

[DTDFVocab:provides what_if_sim_results
DTDFVocab:atStage baseDesc:operation]

// ENABLER EXAMPLE (C11)
instance simulator : DTDFVocab:Enabler

[DTDFVocab:enables what_if_sim]
// MODEL EXAMPLE (C10)
instance controller_model : DTDFVocab:Model

[DTDFVocab:inputTo simulator DTDFVocab:inputTo
state_estimator DTDFVocab:inputTo
optimization_algs]

// DESCRIBED CHARACTERISTIC EXAMPLE (C20)
instance standardization :

DTDFVocab:Standardization [base:desc
"Communication is carried out using AMQP
standard via RabbitMQ. Behavioral models have
been produced following the FMI standard
version 2."]

Listing 2. DTDF ontology incubator description model excerpt in OML.

UI creation capabilities, c) exports to web and all desktop
platforms, and d) focuses on ease-of-use. By using the .NET
version of Godot, we can also subscribe to RabbitMQ [18]
message broker queues through available C# libraries, enabling
us to capture data flowing from the real or simulated incubator
system and display it in the visualization.

The DTDF ontology is served by the Apache Jena Fuseki
server in Rosetta [12]. We use queries to retrieve the details
of the DT instance described in DTDF via SPARQL, which
is a standard query language for retrieving and manipulating
data stored in Resource Description Framework (RDF) format.
Users interact with the Fuseki server by sending HTTP GET
requests to its endpoint, allowing them to retrieve and explore
DTDF ontological data represented in RDF. This functionality
facilitates the querying of complex datasets and the extraction
of specific relationships and entities, enabling efficient data
retrieval within semantic web applications.

From these query results, DTInsight creates a DT visualiza-
tion termed a constellation, following the approach suggested
in [3]. A DT constellation is a conceptual architecture that
represents the flow of data between Physical Twin (PT), DT,
and within the DT. The DT is thus viewed “as an agglomer-
ation of all related models, data, enablers, and [services] that
are used in the DT activities” [3].

Note that while other ontology visualizations exist [19],
these often use conventional class- or graph-based visualiza-
tion methods which are not suited for DTs and their rich
semantic structure. Instead, we see that this constellation view
can improve stakeholder collaboration in DT engineering [20].

We make the DT constellation interactive, to unlock the
filtering and presenting of relevant and detailed information
to the user [21], and behavioral, by reflecting the incoming
data flow of sensor information. These properties motivate the
choice of Godot to build a dynamic visualization.

b) User Interaction with DTInsight: DTInsight offers
users various features to gain insights into the system. Fig-
ure 1 (DTInsight) illustrates the DT system’s composition,

Fig. 2. DT constellation interactivity: highlight DT component dependencies
and display an up-to-date 3D visualization of the system

structured into two primary sections. The left side repre-
sents the five PT components: Operator, Machine, System
Environment, System, and Sensors/Data Transmission. The
right side (from bottom-to-top) illustrates the three capability
categories of the DT: Models/Data, Enablers, and Services.
One-directional arrows connect the components, indicating
their inter-dependencies and data flow relationships.

Figure 2 shows DT constellation interactivity: hovering the
mouse or clicking over DT components highlights connected
components and their data flows. This provides the user with
a structural understanding of the DT by allowing them to
easily explore its components as they are formally described in
ontologies. It can help them find components that depend on
each other, and navigate backward or forward in the layered
and service-based DT conceptual architecture.

Additional Interaction: If the user has connected the soft-
ware folder containing the DT code, they can also click on a
component to see its associated script. If they have connected
RabbitMQ, they can click on a sensor component to see a
graph of its real-time data.

And finally, the user can pick an external visualization file
(a Godot resource pack) to open a 3D visualization of the DT
in a pop-up that reflects incoming data from sensors. In the
example incubator visualization presented in Figure 2, data
labels are updated to reflect the temperature in real-time and
the heater color turns red when heating. This strengthens the
structural and behavioral descriptions, while keeping the 3D
visualization decoupled from the conceptual architecture by
being packed into an external file.

IV. CONTINUOUS REPORT GENERATION

With DTInsight, we are targeting both DT experts and non-
technical personnel who benefit from continuous reporting
to stay updated on the evolution of the DT as it is being
developed. From a CI/CD pipeline, currently implemented
using GitHub Actions, we can automatically generate a char-
acteristics table and visualizations1 from every commit to the
repo containing the DT code and description model.

1An example page for the incubator DT is found here: https://oakeslabmtl.
github.io/DTDF/

https://oakeslabmtl.github.io/DTDF/
https://oakeslabmtl.github.io/DTDF/


Thus, the reporting page deployment takes three steps:
1) Modeling the DT in the DTDF (in OML/OWL/RDF)
2) Setting up the deployment of the static website
3) Running the CI/CD workflow to create the report page
The first step is that the user updates the description model

of their DT or system using an ontology editing tool such
as openCAESAR Rosetta, which is then committed to a Git
repository. Upon committing, the reporting pipeline loads the
ontology in a Fuseki server and runs the DTInsight tool in a
Linux xvfb display server. We trigger its query in Godot via
an HTTP request. It outputs the HTML characteristics table,
the screenshot of the conceptual architecture, and the YAML
file describing it. The web-export of DTInsight is embedded
as an iframe into the reporting page, which is then deployed
on the web as a static website using Hugo [22].

Thus, as the underlying ontology of the DT evolves, the
reporting page reflecting the DT characteristics and conceptual
architecture is automatically updated to mirror these changes.

V. RELATED WORK

a) DT Architecture: Dalibor et al. employ DSLs to
generate interactive DT cockpits that integrate both the internal
DT infrastructure and a monitoring frontend [23]. A similar
low-code approach is taken by De Sanctis et al. in the context
of smart cities [24]. However, they do not adopt the ontological
and service-oriented approach resulting in the DT constellation
view [25], nor do they report infrastructure evolution within a
continuous CI/CD pipeline. Carrion et al. recently proposed a
conceptual Entity-Relationship Digital Twin (ERDT) model
to represent the PT, DT, and their interconnections [26].
Information retrieval within this model is facilitated through
DSL-defined queries [27], [28]. In contrast, our approach
leverages an ontological framework that enables formal se-
mantics, logical inference, and automated reasoning, using
SPARQL for queries. Our work resembles Software Architec-
ture Reconstruction (SAR) explored by Ducasse et al. [29], but
applied to DTs. Unlike traditional reverse architecting from
source code, we perform manual SAR by leveraging user-
defined ontologies to construct a conceptual and architectural
view, utilizing the DT constellation’s reporting style. Ozkaya
et al. proposed a modeling language for DT architecture using
C4 (Context, Containers, Components, Code) [30]. In contrast,
our work focuses on reporting DT architecture components in
the DTDF, using ontologies as ground truth.

b) DT Reporting: The lack of adequate documentation
in DT systems and the frequent divergence between actual
and original design is highlighted by Gunasekaran et al. [4].
To address this, their work leverages logging to analyze the
behavior of evolving DT systems. In contrast, our approach
focuses on simplifying the generation of continuous software
documentation through DTDF reporting driven by expert
knowledge. Yahouni et al. propose a reporting system for
decision-making actors during manufacturing. It uses a Multi-
Agent System (MAS) to gather user needs, extract data,
calculate Key Performance Indicators (KPIs), and generate

reports [31]. In contrast, our approach is centered on gen-
erating conceptual DT reports, focusing on their architecture
and characteristics. Uhlenkamp et al. propose a DT maturity
assessment tool2, allowing the user to assign values to their
assessment categories through a web-based form and obtain
a maturity score [32]. By comparison, we focus on the
conceptual DT architecture, describing DTs using free-form
text for most characteristics.

c) Software Visualization: Langelier et al. used visualiza-
tion to analyze large scale-systems [33]. Similarly, Cerny et al.
explored microservice architecture visualization techniques for
static and dynamic SAR [34], [35]. Meanwhile, Antoniazzi et
al. focused on RDF graph visualization [36]. We bring those
works into SAR for (micro)service-based DTs using the DTDF
ontology, structuring its RDF graph as a DT constellation
visualization and making it behavioral by integrating data flow.

VI. CONCLUSION

DTInsight’s primary benefit is enhancing communication
with stakeholders, which is achieved through a threefold
contribution to DT reporting: making it explicit through the
DTDF ontology, interactive via the structural and behavioral
conceptual architecture, and continuous through reporting page
generation. This provides a domain-specific view on DTs,
building on prior work on a DT reporting framework [3], [11].
Furthermore, the integration of scripts directly into the DT
constellation and the inclusion of real-time data in graphs and
3D visualizations promote a practice of interactive monitoring.

Limitations: However, there are some limitations to con-
sider. The system presents a high-level conceptual visualiza-
tion of the DT architecture, but it requires modeling by a
DT expert that has an overarching understanding of the DT.
Moreover, the visualization itself could be made more readable
and offer a denser representation of information. Going deeper
into examining each component of the DT would also promote
observability [8]. On the technical side, the system currently
supports only one message broker (RabbitMQ), which limits
its flexibility. Additionally, the reliance on manually written
ontologies is a limitation, though this could be improved
by using techniques like Large Language Models (LLMs)
for automatic ontology generation, or by incorporating visual
interfaces to offer a creation GUI. Another limitation is that
the current tool only supports the representation of a single DT
at a time, but this could be expanded to represent systems-of-
systems [37]. Furthermore, the system does not support real-
time changes to represent self-reconfiguring DTs [38]. This
aligns with research on human/DT interaction with intelligent
and adaptive interfaces capable of evolving in real time and
adapting to both the operator’s context and needs [39].

Future work: We are currently pursuing editing the
description model directly from a visual interface, assisted by
integrated LLMs. We are also looking at exposing more infor-
mation about each component in the DT, such as its current
lifecycle stage, operational state, and visualizing simulation
results over time.

2https://dt-maturity.eu/

https://dt-maturity.eu/


REFERENCES

[1] A. M. Madni, C. C. Madni, and S. D. Lucero, “Leveraging digital twin
technology in model-based systems engineering,” Systems, vol. 7, no. 1,
p. 7, 2019.

[2] J. Michael, L. Cleophas, S. Zschaler, T. Clark, B. Combemale, T. God-
frey, D. E. Khelladi, V. Kulkarni, D. Lehner, B. Rumpe, M. Wimmer,
A. Wortmann, S. Ali, B. Barn, I. Barosan, N. Bencomo, F. Bordeleau,
G. Grossmann, G. Karsai, O. Kopp, B. Mitschang, P. Muñoz Ariza,
A. Pierantonio, F. A. C. Polack, M. Riebisch, H. Schlingloff, M. Stumpt-
ner, A. Vallecillo, M. van den Brand, and H. Vangheluwe, “Model-driven
engineering for digital twins: Opportunities and challenges,” Systems
Engineering, p. sys.21815, Apr. 2025.

[3] B. Oakes, A. Parsai, S. V. Mierlo, S. Demeyer, J. Denil, P. D. Meule-
naere, and H. Vangheluwe, “Improving digital twin experience reports,”
in Proceedings of the 9th International Conference on Model-Driven
Engineering and Software Development - Volume 1: MODELSWARD,,
INSTICC. SciTePress, 2021, pp. 179–190.

[4] R. Gunasekaran, B. Haverkort, and L. Kruger, “Behavioral analysis of
a digital twin using logging and model learning,” Journal of Object
Technology, vol. 24, no. 2, pp. 2:1–14, May 2025, the 21st European
Conference on Modelling Foundations and Applications (ECMFA 2025).
[Online]. Available: http://www.jot.fm/contents/issue 2025 02/a7.html

[5] J. Hugues, A. Hristosov, J. J. Hudak, and J. Yankel, “TwinOps - DevOps
meets model-based engineering and digital twins for the engineering of
CPS,” in Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion
Proceedings. Virtual Event Canada: ACM, Oct. 2020, pp. 1–5.

[6] E. Ozoani, M. Gerchick, and M. Mitchell, “Model card
guidebook,” 2022. [Online]. Available: https://huggingface.co/docs/
hub/en/model-card-guidebook

[7] T. R. Toma, B. Grewal, and C.-P. Bezemer, “Answering user questions
about machine learning models through standardized model cards,” in
2025 IEEE/ACM 47th International Conference on Software Engineer-
ing (ICSE), 2025, pp. 1488–1500.

[8] C. Majors, L. Fong-Jones, and G. Miranda, Observability Engineering:
Achieving Production Excellence. Sebastopol, CA: O’Reilly Media,
2022.

[9] K. Fiter, L. Malassigné-Onfroy, and B. Oakes, “DTInsight,”
https://github.com/oakeslabmtl/DTInsight, 2025.

[10] ——, “DTDF ontology,” https://github.com/oakeslabmtl/DTDF, 2025.
[11] S. Gil, B. Oakes, C. Gomes, M. Frasheri, and P. G. Larsen, “Toward

a systematic reporting framework for Digital Twins: A cooperative
robotics case study,” SIMULATION, vol. 101, no. 3, pp. 313–339, Aug.
2024.

[12] M. Elaasar, N. Rouquette, D. Wagner, B. Oakes, A. Hamou-Lhadj, and
M. Hamdaqa, “openCAESAR: Balancing Agility and Rigor in Model-
Based Systems Engineering,” in ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion
(MODELS-C). Västerås, Sweden: IEEE, Oct. 2023, pp. 221–230.

[13] Godot Engine contributors, “Godot engine,” https://godotengine.org/,
2025, version 4.4.1.

[14] B. Oakes, A. Parsai, B. Meyers, I. David, S. Van Mierlo, S. Demeyer,
J. Denil, P. De Meulenaere, and H. Vangheluwe, “A digital twin
description framework and its mapping to Asset Administration Shell,”
in MODELSWARD, Communications in Computer and Information
Science, vol. 1708. Springer, Aug. 2023, pp. 1–24.

[15] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[16] H. Feng, C. Gomes, C. Thule, K. Lausdahl, M. Sandberg, and P. G.
Larsen, “The incubator case study for digital twin engineering,” arXiv
preprint arXiv:2102.10390, 2021.

[17] C. Gomes, M. H. Kristensen, M. S. Andersen, P. Talasila, H. Feng,
T. Wright, and P. G. Larsen, “Digital twin tutorial: The incubator
case study,” in Engineering Trustworthy Software Systems: 6th Inter-
national School, SETSS 2024, Chongqing, China, April 14–21, 2024,
Tutorial Lectures. Springer, 2025, pp. 68–101, code for the incuba-
tor DT is found at https://github.com/INTO-CPS-Association/example
digital-twin incubator.

[18] RabbitMQ, “RabbitMQ: Open source message broker,” 2025, accessed:
2025-06-01. [Online]. Available: https://www.rabbitmq.com/

[19] M. Dudáš, S. Lohmann, V. Svátek, and D. Pavlov, “Ontology visualiza-
tion methods and tools: a survey of the state of the art,” The Knowledge
Engineering Review, vol. 33, p. e10, 2018.

[20] P.-E. Goffi, R. Tremblay, and B. Oakes, “Engineering a digital twin
for the monitoring and control of beer fermentation sampling,” in
Proceedings of the 28th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings,
2025.

[21] A. Štěpánek, D. Kuťák, B. Kozlı́ková, and J. Byška, “Interactive dia-
grams for software documentation,” in 2024 IEEE Working Conference
on Software Visualization (VISSOFT), Oct. 2024, pp. 12–23.

[22] Hugo Authors, “Hugo: The world’s fastest framework for building
websites,” 2025. [Online]. Available: https://gohugo.io/

[23] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann, “To-
wards a model-driven architecture for interactive digital twin cockpits,”
in Conceptual Modeling, G. Dobbie, U. Frank, G. Kappel, S. W. Liddle,
and H. C. Mayr, Eds. Cham: Springer International Publishing, 2020,
vol. 12400, pp. 377–387.

[24] M. De Sanctis, L. Iovino, M. T. Rossi, and M. Wimmer, “A low-code
assessment platform for urban digital twins,” Information and Software
Technology, vol. 183, p. 107726, Jul. 2025.

[25] B. Oakes, C. Gomes, E. Kamburjan, G. Abbiati, E. Ecem Bas, and
S. Engelsgaard, “Towards ontological service-driven engineering of
digital twins,” in Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems. Linz
Austria: ACM, Sep. 2024, pp. 464–469.

[26] E. Carrión, Ó. Pastor, and P. Valderas, “Conceptual modelling method
for digital twins,” in Conceptual Modeling, W. Maass, H. Han, H. Yasar,
and N. Multari, Eds. Cham: Springer Nature Switzerland, 2025, pp.
417–435.

[27] E. Carrión and P. Valderas, “Implementing digital twin query views,”
in Research Challenges in Information Science, J. Grabis, T. E. J. Vos,
M. J. Escalona, and O. Pastor, Eds. Cham: Springer Nature Switzerland,
2025, pp. 279–294.

[28] E. Carrión, P. Valderas, and Ó. Pastor, “Querying Digital Twin Models:,”
in Proceedings of the 20th International Conference on Evaluation of
Novel Approaches to Software Engineering. Portugal: SCITEPRESS -
Science and Technology Publications, 2025, pp. 398–405.

[29] S. Ducasse and D. Pollet, “Software Architecture Reconstruction: A
Process-Oriented Taxonomy,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 4, pp. 573–591, Jul. 2009.

[30] M. Ozkaya, “Towards an architecture modeling language for specifying
digital twin architectures using c4,” in New Trends in Intelligent Software
Methodologies, Tools and Techniques. IOS Press, 2024, pp. 151–164.

[31] Z. Yahouni, A. Ladj, F. Belkadi, O. Meski, and M. Ritou, “A smart re-
porting framework as an application of multi-agent system in machining
industry,” International Journal of Computer Integrated Manufacturing,
vol. 34, no. 5, pp. 470–486, May 2021.

[32] J.-F. Uhlenkamp, J. B. Hauge, E. Broda, M. Lütjen, M. Freitag, and
K.-D. Thoben, “Digital twins: A maturity model for their classification
and evaluation,” IEEE Access, vol. 10, pp. 69 605–69 635, 2022.

[33] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 214–223.

[34] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE). IEEE, 2022, pp. 39–48.

[35] T. Cerny, A. S. Abdelfattah, J. Yero, and D. Taibi, “From static
code analysis to visual models of microservice architecture,” Cluster
Computing, vol. 27, no. 4, pp. 4145–4170, Jul. 2024.

[36] F. Antoniazzi and F. Viola, “RDF graph visualization tools: a survey,”
in 2018 23rd Conference of Open Innovations Association (FRUCT),
2018, pp. 25–36.

[37] F. Adesanya, K. C. Silva, V. V. G. Neto, and I. David, “Systems
of twinned systems: A systematic literature review,” arXiv preprint
arXiv:2505.19916, 2025.

[38] E. Kamburjan, V. N. Klungre, R. Schlatte, S. L. T. Tarifa, D. Cameron,
and E. B. Johnsen, “Digital twin reconfiguration using asset models,”
in International Symposium on Leveraging Applications of Formal
Methods. Springer, 2022, pp. 71–88.

[39] C. Palmer, Y. M. Goh, E.-M. Hubbard, R. Grant, and R. Houghton, “The
need for a symbiotic interface for a digital twin,” in Advances in Trans-
disciplinary Engineering, P. Koomsap, A. Cooper, and J. Stjepandić,
Eds. IOS Press, Nov. 2023.

http://www.jot.fm/contents/issue_2025_02/a7.html
https://huggingface.co/docs/hub/en/model-card-guidebook
https://huggingface.co/docs/hub/en/model-card-guidebook
https://github.com/INTO-CPS-Association/example_digital-twin_incubator
https://github.com/INTO-CPS-Association/example_digital-twin_incubator
https://www.rabbitmq.com/
https://gohugo.io/

	Introduction
	Explicit DT Description Framework Ontology
	Interactive DTInsight Tool
	Continuous Report Generation
	Related Work
	Conclusion
	References

